21 research outputs found

    Role of the triplet state in the green emission peak of polyfluorene films: A time evolution study

    Get PDF
    doi:10.1063/1.3298371 http://jcp.aip.org/jcpsa6/v132/i4/p044104_s1The blue emission of ethyl-hexyl substituted polyfluorene (PF2/6) films is accompanied by a low energy green emission peak around 500 nm in inert atmosphere. The intensity of this 500 nm peak is large in electroluminescence (EL) compared to photoluminescence (PL) measurements. Furthermore, the green emission intensity reduces dramatically in the presence of molecular oxygen. To understand this, we have modeled various nonradiative processes by time dependent quantum many body methods. These are (i) intersystem crossing to study conversion of excited singlets to triplets leading to a phosphorescence emission, (ii) electron-hole recombination (e-hR) process in the presence of a paramagnetic impurity to follow the yield of triplets in a polyene system doped with paramagnetic metal atom, and (iii) quenching of excited triplet states in the presence of oxygen molecules to understand the low intensity of EL emission in ambient atmosphere, when compared with that in nitrogen atmosphere. We have employed the Pariser-Parr-Pople Hamiltonian to model the molecules and have invoked electron-electron repulsions beyond zero differential approximation while treating interactions between the organic molecule and the rest of the system. Our time evolution methods show that there is a large cross section for triplet formation in the e-hR process in the presence of paramagnetic impurity with degenerate orbitals. The triplet yield through e-hR process far exceeds that in the intersystem crossing pathway, clearly pointing to the large intensity of the 500 nm peak in EL compared to PL measurements. We have also modeled the triplet quenching process by a paramagnetic oxygen molecule which shows a sizable quenching cross section especially for systems with large sizes. These studies show that the most probable origin of the experimentally observed low energy EL emission is the triplets.We thank Department of Science and Technology for supporting this work through the Grant No. SR/S2/CMP-24/2003

    The role of triplet states in the emission mechanism of polymer light-emitting diodes

    Get PDF
    The blue emission of polyfluorene (PF) based light-emitting diodes (LEDs) is known to degrade due to a low energy green emission, which hitherto has been attributed to oxidative defects. By studying the electroluminescence from ethyl-hexyl substituted PF LEDs in the presence of oxygen and in an inert atmosphere, and by using trace quantities of paramagnetic impurities (PM) in the polymer, we show that the triplet states play a major role in the low energy emission mechanism. Our time- dependent many-body studies show that there is a large cross-section for the triplet formation in the electron-hole recombination process in presence of PM, and intersystem crossing from excited singlet to triplet states.We gratefully acknowledge the NSF for support through grant Nos. ECCS-0523656 and 0823563

    High-pressure study of the Raman modes in YBa2(Cu0.96Ni0.04)4O8

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevB.60.4363 DOI:10.1103/PhysRevB.60.4363We present a study of the Raman phonons in YBa2(Cu0.96Ni0.04)4O8 under hydrostatic pressure in the superconducting phase. A comparison with our earlier work on the undoped YBa2Cu4O8 shows that the pressure coefficients of two vibrational modes involving oxygen atoms differ significantly from those of the corresponding modes in the undoped material. These are the O(1) chain mode which shifts 33% faster and the O(2)-O(3) in-phase mode which shifts 23% slower than the undoped counterparts. The other Raman modes in the Ni-doped sample shift in a manner similar to the undoped material. The observed behavior of the O(1) chain and O(2)-O(3) in-phase modes in YBa2(Cu0.96Ni0.04)4O8 under pressure and the softening of the Cu(1) Ag mode frequency with increasing Ni doping suggest that the Ni atoms substitute for the Cu atoms in the chain, which in turn decreases the compressibility in the vicinity of the Cu(Ni) chain atom.This work was supported by U.S. Department of Energy Grant No. DE-FG02-90ER45427 through the Midwest Superconductivity Consortium. D.J.P. thanks the U.S. Department of Education for support through Grant No.P200A50259

    Planarity of para Hexaphenyl

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevLett.82.3625 DOI:10.1103/PhysRevLett.82.3625We present experimental and theoretical findings on the geometry of polycrystalline para hexaphenyl via Raman scattering. The planarity of the molecule is affected by hydrostatic pressure and temperature. Our studies indicate that the potential energy curve which governs the torsional motion between neighboring phenyl rings is “W” shaped. We determine the activation energy to promote the molecule from a nonplanar to a planar state to be 0.04 eV, in good agreement with our quantum chemical calculations. From the relative intensities of the 1280cm-1 to the 1220cm-1 Raman modes we show that high pressure planarizes the molecules, modifying the “W”-shaped potential energy curve to a “U”-shaped one.We acknowledge the financial support from U.S. Army Grant No. DAAL03-92-0381, University of Missouri Research Board and Österreichische Nationalbank (Project No. 6608)

    Polyfluorene as a model system for space-charge-limited conduction

    Get PDF
    Ethyl-hexyl substituted polyfluorene (PF) with its high level of molecular disorder can be described very well by one-carrier space-charge-limited conduction for a discrete set of trap levels with energy \sim 0.5 eV above the valence band edge. Sweeping the bias above the trap-filling limit in the as-is polymer generates a new set of exponential traps, which is clearly seen in the density of states calculations. The trapped charges in the new set of traps have very long lifetimes and can be detrapped by photoexcitation. Thermal cycling the PF film to a crystalline phase prevents creation of additional traps at higher voltages.We gratefully acknowledge the support of this work through the National Science Foundation under grant Nos. ECS-0523656 and DMR-0413601

    Hydrostatic pressure dependence of the luminescence and Raman frequencies in polyfluorene

    Get PDF
    DOI: 10.1103/PhysRevB.68.115203 http://link.aps.org/doi/10.1103/PhysRevB.68.115203We present studies of the photoluminescence (PL), absorption, and Raman scattering spectra from poly[2,7-(9,9′-bis(2-ethylhexyl))fluorene] under hydrostatic pressures of 0-100 kbar at room temperature. The well-defined PL and associated vibronics that are observed at atmospheric pressure change dramatically around 20 kbar in the bulk sample and at around 35 kbar for the thin-film sample. Beyond these pressures the PL emission from the backbone is swamped by strong peaks due to aggregates and keto defects in the 2.1-2.6 eV region. The Raman peaks shift to higher energies and exhibit unexpected antiresonance line shapes at higher pressures, indicating a strong electron-phonon interaction.S.G. acknowledges the donors of the American Chemical Society Petroleum Research Fund No. 38193-B7! for partial support of this research. U.S. thanks SONY International Europe, Stuttgart, and the Deutsche Forschungsgemeinschaft (DFG) for financial support

    Photoluminescence of short-period GaAs/AlAs superlattices: A hydrostatic pressure and temperature study

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevB.58.7222 DOI:10.1103/PhysRevB.58.7222The temperature and pressure dependence of type-I and -II transitions from photoluminescence (PL) spectra in a series of (GaAs)m/(AlAs)m superlattices show that the temperature dependence of energy bands can be described very well with a Bose-Einstein-type equation. From these measurements the parameters that describe the temperature dependence of excitonic transition energies and the corresponding broadening of the PL line are deduced. The pressure dependence of the PL linewidths of the type-I exciton as a function of pressure and temperature yield the intervalley deformation potential. Beyond the type-I-type-II crossover, the PL linewidth increases as a function of both pressure and temperature. The electron-phonon deformation potential for Γ-X scattering is found to be temperature dependent.We thank S. Satpathy and S. Zollner for valuable discussions. One of us ~H.R.C.! acknowledges support by the NSF under Grant No. DMR-9633107. M.C. thanks the U.S. Army for support through Grant No. DAAL03-92-0381. The work at Purdue University was supported by the National Science Foundation: Materials Research Science and Engineering Center Grant Nos. DMR 94-00415 and DMR 93-03186

    X-Ray Lithography of Metal and Semiconductor Nanoparticles

    Get PDF
    In the last few years, a considerable amount of research has focused on the three-dimensional fabrication of contacts and electronic devices. Most techniques, however, are essentially based on photoreduction, and are limited to noble- and semi-noble metals. We present here a general method that allows patterning of porous matrices in 3D with metal, but also with semiconductor nanoparticles which is of potential relevance for microfabrication applications. In our method, the pore-filling solvent of a sol-gel material is exchanged with a solution of precursors. The precursors are photodissociated and nanoparticles are formed when the monoliths are irradiated. In a series of previous publications we showed that noble metals but also semiconductor quantum dots can be produced with our technique. Here we focus on the Xray variation of our technique and show that monoliths can be patterned with metals and also with semiconductor nanoparticles. The patterns have the same resolution than the masks, i.e., around 10 μm, and extend into the bulk of the monoliths for up to a depth of 12 mm. Our method possesses several attractive features. Sample preparation is very simple; the technique has a bottom-up character; it allows access to a wide number of materials, such as noble metals and II-VI semiconductor materials; and it has a 3D character. With additional developments, our technique could be possibly used to complement more established techniques such as LIGA and multiphoton fabrication techniques which are currently used for 3D microfabrication

    Laser Writing of Semiconductor Nanoparticles and Quantum Dots

    Get PDF
    Silica aerogels were patterned with CdS using a photolithographic technique based on local heating with infrared (IR) light. The solvent of silica hydrogels was exchanged with an aqueous solution of the precursors CdNO3 and NH4 OH, all precooled to a temperature of 5°C. Half of the bathing solution was then replaced by a thiourea solution. After thiourea diffused into the hydrogels, the samples were exposed to a focused IR beam from a continuous wave, Nd-YAG laser. The precursors reacted in the spots heated by the IR beam to form CdS nanoparticles. We lithographed features with a diameter of about 40 µm, which extended inside the monoliths for up to 4 mm. Samples were characterized with transmission electron microscopy and optical absorption, photoluminescence, and Raman spectroscopies. Spots illuminated by the IR beam were made up by CdS nanoparticles dispersed in a silica matrix. The CdS nanoparticles had a diameter in the 4-6 nm range in samples exposed for 4 min to the IR beam, and of up to 100 nm in samples exposed for 10 min

    Geometry-Dependent Electronic Properties of Highly Fluorescent Conjugated Molecules

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevLett.85.2388 DOI:10.1103/PhysRevLett.85.2388We present a combined experimental/theoretical study of the electronic properties of conjugated para- phenylene type molecules under high pressure up to 80 kbar. Pressure is used as a tool to vary the molecular geometry and intermolecular interaction. The influence of the latter two on singlet and triplet excitons as well as polarons is monitored via optical spectroscopy. We have performed band structure calculations for the planar poly(para-phenylene) and calculated the dielectric function. By varying the intermolecular distances and the length of the polymer repeat unit the observed pressure effects can be explained.Supported by the University of Missouri Research Board, OeNB Project No. 6608, the vector-computer facilities at the University of Graz
    corecore